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Abstract. The existence of a saddle point in nonconvex constrained optimization problems is con-
sidered in this paper. We show that, under some mild conditions, the existence of a saddle point can
be ensured in an equivalent p-th power formulation for a general class of nonconvex constrained
optimization problems. This result expands considerably the class of optimization problems where
a saddle point exists and thus enlarges the family of nonconvex problems that can be solved by
dual-search methods.
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1. Introduction

Let f : R
n �→ R and gj : R

n �→ R, j = 1, . . . , m, be twice differentiable
functions. Consider the following constrained optimization problem:

min f (x) (1a)

s. t. gj (x) � bj , j = 1, 2, . . . , m, (1b)

x ∈ X, (1c)

where X is a closed and bounded subset of R
n. Without loss of generality, we as-

sume that f and gj s are strictly positive over X and bj > 0 for all j . This assump-
tion can be always satisfied via some equivalent transformations (e.g., exponential
transformation) on (1).

It is well known that the saddle point condition is a sufficient condition for
optimality. A crucial subject in constrained optimization is then the existence of
a saddle point of the Lagrangian associated with problem (1). If there exists a
saddle point, some efficient dual-search methods (see Luenberger, 1984) can be
adopted to solve problem (1). In convex situations, the existence of a saddle point
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is proven in Karlin (1959) using the separation theorem under some constraint
qualification conditions. The existence of a saddle point, however, is not guaranteed
for nonconvex constrained optimization problems.

The existence of a saddle point is closely related to the convexity of the perturb-
ation function of problem (1) defined by

w(y) = min{f (x) | gj (x) � yj , j = 1, 2, . . . , m , x ∈ X}, (2)

The domain of the function w is

Y = {y ∈ R
m | there exists a x ∈ X satisfying gj (x) ≤ yj , j = 1, 2, . . . , m}.

(3)

It has been shown that problem (1) possesses a saddle point if and only if the graph
of w has a supporting hyperplane at b = (b1, . . . , bm)

T (see Minoux, 1986).
Applying a p-th power, with p ≥ 1, to both the objective function and the

constraints of (1) results in the following p-th power formulation (see Li, 1995
and Li, 1997) which is equivalent to problem (1),

min [f (x)]p (4a)

s. t. [gj (x)]p ≤ b
p

j , j = 1, 2, . . . , m, (4b)

x ∈ X. (4c)

Let wp(z) denote the perturbation function of the p-th power formulation in (4),

wp(z) = min{[f (x)]p | [gj (x)]p ≤ zj , j = 1, 2, . . . , m, x ∈ X}
Note that wp(y

p) = [w(y)]p . The domain of wp is

Yp = {z = (y
p

1 , . . . , y
p
m)

T | y ∈ Y }.
It has been proven in Li (1995) that under certain conditions the perturbation func-
tion of (4), wp, is a convex function of z in a neighborhood of bp = (bp1 , . . . , b

p
m)

T

when p is chosen sufficiently large. Thus a local saddle point is guaranteed to exist
for the p-th power formulation. In many cases, this local saddle point is expected
to be a global saddle point of problem (4). It has been shown in Xu (1997) that the
same result can be obtained under weaker conditions by applying the p-th power
transformation only to the constraints of (1).

The aim of this paper is to show that under some mild conditions, the local
saddle point produced by the p-th power method is actually a global saddle point
of problem (4) when p is chosen sufficiently large. The result in this paper ex-
pands considerably the class of optimization problems where a saddle point exists.
Dual-based algorithms can then succeed in solving a general class of nonconvex
problems in their p-th power formulations while the classical Lagrangian method
fails due to a duality gap.
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2. Existence of a Saddle Point

Let x∗ be a global optimal solution of problem (1). We make the following conven-
tional assumption about x∗.

ASSUMPTION 2.1

(a) There is a multiplier vector λ∗ ∈ R
m+ satisfying the following first-order

optimality conditions:


∇f (x∗)+

m∑
j=1

λ∗j∇gj (x∗)


T

d ≥ 0, ∀d ∈ T (x∗), (5)

m∑
j=1

λ∗j [gj (x∗)− bj ] = 0, (6)

where T (x∗) denotes the tangent cone of X at x∗.
(b) The Hessian of the Lagrangian of problem (1):

H(x∗) = ∇2f (x∗)+
∑

j∈J (x∗)
λ∗j∇2gj (x

∗)

is positive definite on M(x∗), where

J (x∗) = {j ∈ {1, . . . , m} | λ∗j > 0},
N(x∗) = {d ∈ R

n | ∇f (x∗)T d = 0 and ∇gj (x∗)T d = 0, j ∈ J (x∗)},
M(x∗) = N(x∗) ∩ T (x∗).

(c) The set X is locally convex around x∗.

The associated Lagrangian function of the p-th power formulation in (4) is
defined by

Lp(x, µ) = [f (x)]p +
m∑
j=1

µj {[gj (x)]p − b
p

j }. (7)

Let

µ∗p = [f (x∗)]p−1(λ∗1/[g1(x
∗)]p−1, . . . , λ∗m/[gm(x∗)]p−1)T . (8)

In the sequel, we always assume J (x∗) �= ∅. Otherwise, (1) can be reduced to
an unconstrained problem. The following theorem (see Xu, 1997, Theorem 2.3)
shows that (x∗, µ∗p) is a local saddle point of the Lagrangian defined by (7) when
p is sufficiently large.
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THEOREM 2.1 Let x∗ be a global optimal solution satisfying Assumption 2.1.
Then there exists a q0 > 0 and δ > 0 such that

Lp(x
∗, µ) ≤ Lp(x

∗, µ∗p) ≤ Lp(x, µ
∗
p) (9)

holds for all x ∈ N(x∗, δ) ∩X and µ ≥ 0 when p ≥ q0, where

N(x∗, δ) = {x ∈ R
n | ‖x − x∗‖ ≤ δ}.

We now proceed to prove that under certain conditions inequality (9) holds for
all x ∈ X when p is chosen large enough. It is easy to see that the first inequality in
(9) always holds by noticing condition (6) and the feasibility of x∗. We will prove
in the following the second inequality in (9). Let J−(x∗) = {1, . . . , m} \ J (x∗).
Define

F = {x ∈ X | gj (x) ≤ bj , j = 1, . . . , m}, (10)

F1(ε) = {x ∈ X | gj (x) ≤ bj + ε, j ∈ J (x∗)}, (11)

F2 = {x ∈ X | gj (x) ≤ bj , j ∈ J−(x∗)}, (12)

U(ε) = {x ∈ X | f (x) ≤ f (x∗)+ ε}. (13)

THEOREM 2.2 Let x∗ be a global optimal solution satisfying Assumption 2.1.
Suppose that the following conditions hold:

(i) x∗ is the unique global solution of (1);
(ii) If J−(x∗) �= ∅, then there exist positive ε0 and ε1 such that

f (x) > f (x∗)+ ε0, ∀x ∈ F1(ε1) \ F2. (14)

Then there exists a q > 0 such that (9) holds for all x ∈ X and µ ≥ 0 when
p ≥ q.

Proof. Denote N0(x∗, δ) = {x ∈ R
n | ‖x − x∗‖ < δ}. Let

c = dist (F,U(0) \N0(x∗, δ))
= min{‖x − y‖ | x ∈ F, y ∈ U(0) \N0(x∗, δ)}.

We claim that c > 0. Otherwise, if c = 0, then there exist two sequences {xn} and
{yn} satisfying xn ∈ F , yn ∈ U(0) \ N0(x∗, δ) such that xn − yn → 0. Since F is
compact, we have xn → x̄ ∈ F and yn → ȳ ∈ U(0) \ N0(x∗, δ). It follows that
x̄ = ȳ. Hence x̄ is an optimal solution of problem (1) and x̄ �= x∗, a contradiction
to the uniqueness of the global optimum solution.

Define

F̃2 =
{
F2, if J−(x∗) �= ∅
X, if J−(x∗) = ∅. (15)
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Note from (10)–(12) that F = F1(0)∩F̃2. Thus, for any positive ε, the set F1(ε)∩F̃2

is an enlargement of the feasible region F by relaxing the strictly active constraints
(with indices j ∈ J (x∗)). Since c > 0, by the compactness of F and the continuity
of f and gj s, there exists a positive ε2 ≤ ε1 satisfying

[F1(ε2) ∩ F̃2] ∩ [U(0) \N0(x∗, δ)] = ∅, (16)

Let

Q = [F1(ε2) ∩ F̃2] \ N0(x∗, δ), (17)

ε3 = min{f (x)− f (x∗) | x ∈ Q}. (18)

Equation (16) implies ε3 > 0.
Now we prove the second inequality in (9) by contradiction. Suppose that there

exists a sequence {xp} ⊂ X with p→+∞ such that

Lp(xp, µ
∗
p) < Lp(x

∗, µ∗p). (19)

Note that gj (x∗) = bj for j ∈ J (x∗). Thus, from (7) and (8), we can rewrite (19)
as ∑

j∈J (x∗)
λ∗j {[gj (xp)/bj ]p−1gj (xp)− bj } < f (x∗)− [f (xp)/f (x∗)]p−1f (xp).

(20)

For convenience, we denote

K1 =
∑

j∈J (x∗)
λ∗j {[gj (xp)/bj ]p−1gj (xp)− bj },

K2 = f (x∗)− [f (xp)/f (x∗)]p−1f (xp).

The following can be verified using (11), (12) and (17),

X = Q ∪ [X \ (F1(ε2) ∪N0(x∗, δ))] ∪ [F1(ε2) \ (F̃2 ∪N0(x∗, δ))] ∪ [N(x∗, δ) ∩X].
Notice from (15) that the set F1(ε2) \ (F̃2 ∪ N0(x∗, δ)) = ∅ if J−(x∗) = ∅.
Since, based on Theorem 2.1, (20) does not hold for xp ∈ N(x∗, δ) ∩ X when
p is sufficiently large, we only need to consider the following three cases.

Case (a): xp ∈ Q. From (18), we have f (xp) ≥ f (x∗)+ ε3. Thus

K1 ≥ −
∑

j∈J (x∗)
λ∗jbj , (21)

K2 ≤ f (x∗)− [1+ ε3/f (x
∗)]p−1f , (22)

where f = minx∈X f (x) > 0. Since ε3 > 0, letting p → +∞, (22) implies
K2 →−∞, which contradicts (20), when combined with (21).
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Case (b): xp ∈ X \ (F1(ε2)∪N0(x∗, δ)). By (11), there exists a j0 ∈ J (x∗) such
that gj0(xp) > bj0 + ε2. Thus

K1 > λ∗j0
(1+ ε2/bj0)

p−1(bj0 + ε2)−
∑

j∈J (x∗)
λ∗jbj , (23)

K2 ≤ f (x∗). (24)

Equation (23) implies that K1 →+∞ as p→+∞, which contradicts (20), when
combined with (24).

Case (c): J−(x∗) �= ∅ and xp ∈ F1(ε2) \ (F̃2 ∪ N0(x∗, δ)). Since ε2 ≤ ε1, by
(11) and (15), we have

xp ∈ F1(ε2) \ (F2 ∪N0(x∗, δ)) ⊂ F1(ε1) \ (F2 ∪N0(x∗, δ)).

Thus, we have f (xp) > f (x∗)+ ε0 from (14). Using similar arguments as in case
(a), we can derive a contradiction to (20).

PROPOSITION 2.1 If the following holds:

F1(0) ∩ U(0) = {x∗}, (25)

then conditions (i) and (ii) in Theorem 2.2 are satisfied.
Proof. Since F ⊆ F1(0), condition (i) can be deduced from (25) directly. Now

suppose that J−(x∗) �= ∅. By the assumption, we have

dist(F1(0) \ F2, U(0)) = inf{‖x − y‖ | x ∈ F1(0) \ F2, y ∈ U(0)} > 0.

Hence, there must exist ε0 and ε1 such that

[F1(ε1) \ F2] ∩ U(ε0) = ∅,
which implies

f (x) > f (x∗)+ ε0, ∀x ∈ F1(ε1) \ F2.

Therefore, (14) is satisfied.

REMARK 2.1 Geometrically, condition (ii) in Theorem 2.2 requires that the con-
tour f (x) = f (x∗) does not extend to the area near the boundary of F2. Thus, if
there exists a supporting hyperplane separating F1(0) from U(0) at x∗, then (14)
will be satisfied. In the following, we verify (25) for convex programming under
assumptions that x∗ is a unique global solution of (1) and that there is no degenerate
active constraints at x∗. Note that F ∩ U(0) = {x∗}. Thus, by the convexity of f
and gj s, there is a hyperplane separating F from U0 at x∗, i.e., ∃λ �= 0 such that

λT (x − x∗) < 0, ∀x ∈ F, x �= x∗, (26)

λT (x − x∗) > 0, ∀x ∈ U(0), x �= x∗. (27)
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Since no active constraint is degenerate, J (x∗) includes all the active indices of the
active constraints, and hence there is a positive ε such that

F ∩N(x∗, ε) = F1(0) ∩N(x∗, ε). (28)

For any x ∈ F1(0), x �= x∗, by the convexity of F1(0), we have x∗ + α(x − x∗) ∈
F1(0) for all α ∈ [0, 1]. There must exist an α0 ∈ (0, 1) such that x∗+α0(x−x∗) ∈
F1(0) ∩N(x∗, ε). Hence x∗ + α0(x − x∗) ∈ F by (28). It follows from (26) that

α0λ
T (x − x∗) = λT [x∗ + α0(x − x∗)− x∗] < 0,

which implies x �∈ U(0) by (27). Therefore F1(0) ∩ U(0) = {x∗}.

From the equivalence between the existence of a saddle point and the existence
of a supporting hyperplane of the perturbation function, we have the following
corollary.

COROLLARY 2.1 Under the conditions of Theorem 2.2, there exist q > 0 and
for each p > q a multiplier µ∗p ∈ Rm+ satisfying

wp(z) ≥ wp(b
p)− (µ∗p)

T (z− bp)

for all z ∈ Yp when p ≥ q.

3. Illustrative Example

EXAMPLE 3.1 Consider the following constrained optimization problem:

min f (x) = 1+ (2x1 − 3)(2x2 − 3) (29a)

s. t. g1(x) = 2x1 − x2 + 2 ≤ 3, (29b)

g2(x) = x2 + 1 ≤ 2, (29c)

x ∈ X = [0, 1.5]2. (29d)

This example is an indefinite quadratic problem and has a unique global optimal
solution x∗ = (1, 1)T with λ∗ = (1, 3)T , see Figure 1. The perturbation function
defined in (2) is given as follows for this example problem:

w(y) =
{

1+ (y1 + y2 − 6)(2y2 − 5), 3 ≤ y1 + y2 ≤ 6 and 1 ≤ y2 ≤ 2.5,
1, otherwise.

In the neighborhood of y = (3, 2)T , w(y) is an indefinite quadratic function with
eigenvalues: 2 + 2

√
2 and 2 − 2

√
2. There is no supporting hyperplane at y =

(3, 2)T and hence no saddle point for problem (29), see Figure 2.
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Figure 1. Geometrical illustration of Example 3.1.

Now consider the equivalent p-th power formulation of (29):

min [f (x)]p = [1+ (2x1 − 3)(2x2 − 3)]p (30a)

s. t. [g1(x)]p = (2x1 − x2 + 2)p ≤ 3p, (30b)

[g2(x)]p = (x2 + 1)p ≤ 2p, (30c)

x ∈ X = [0, 1.5]2. (30d)

It can be verified that Assumption 2.1 and conditions in Theorem 2.2 are satisfied
at x∗. Hence there must exist a p > 1 and a multiplier µ∗p ≥ 0 such that (x∗, µ∗p)
is a saddle point of (30). In fact, when p = 3, it can be verified that µ∗ = µ∗3 =
(4/9, 3)T is a saddle point multiplier for problem (30): x∗ = (1, 1)T solves the
following Lagrangian problem:

min
x∈X

L3(x, µ
∗) = min

x∈[0,1.5]2
[f (x)]3 + 4/9{[g1(x)]3 − 33} + 3{[g2(x)]3 − 23}.

Combined with (6) and (8), this implies that (x∗, µ∗) is a saddle point of problem
(30). Figure 3 illustrates the perturbation function w3(z) near z = (27, 8)T .
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Figure 2. Perturbation function w(y) of Example 3.1.

Figure 3. 3-rd power perturbation function w3(z) of Example 3.1.
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Figure 4. Illustration of condition (ii) in Theorem 2.2 for Example 4.1.

4. Final Remarks

The result in this paper extends the existence results of a saddle point from convex
constrained optimization to a general class of nonconvex constrained optimization
problems. The result on the existence of a saddle point in Theorem 2.2 can be
further extended to certain extent.

Suppose there are finitely many global solutions of (1), x∗[1], x
∗
[2], . . . , x

∗
[K]. Let

g
[k]
j = gj (x

∗
[k]), k = 1, 2, . . . , K, j = 1, 2, . . . , m. Suppose there exist no distinct

k̂ and k̃ such that g[k̂]j = g
[k̃]
j , ∀ j = 1, ,2, . . . , m. Let x∗[k̂] be a global solution of

(1) such that there exists no other global solution x∗[k̃], k̃ ∈ {1, 2, . . . , K}, k̃ �= k̂

with g[k̃]j ≤ g
[k̂]
j , j = 1, 2, . . . , m, and at least one strict inequality holds. Then it

can be concluded from Theorem 2.2 that a saddle point will exist for a p-th power
formulation of the following modified version of (1), with x∗[k̂] being the unique
global optimal solution,

min f (x)

s. t. gj (x) ≤ g
[k̂]
j , j = 1, 2, . . . , m,

x ∈ X,
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where the assumptions in Theorem 2.2 are assumed to be satisfied at x∗[k̂].
The following example shows that condition (ii) in Theorem 2.2 is indispens-

able to ensure a saddle point to be produced by the p-th power Lagrangian formu-
lation.

EXAMPLE 4.1 Consider a concave instance of problem (1):

min f (x) = 3− x2
1 − x2

2 (31a)

s. t. g1(x) = 3− x1 + x2 ≤ 3, (31b)

g2(x) = 3+ x1 + x2 ≤ 4, (31c)

g3(x) = 2− x2 ≤ 2, (31d)

x ∈ X = [−1, 1]2. (31e)

A graphical illustration of this example is given in Figure 4. We see that the unique
global optimal solution of (31) is x∗ = (1, 0)T . It can be verified that λ∗ =
(0, 2, 2)T , µ∗p = (0, 1/2p−2, 2)T , J (x∗) = {2, 3}, M(x∗) = {0}. Consider point
x0 = (−1, 1)T ∈ X. From Figure 4, we can see that x0 ∈ F1(ε) \F2 for any ε > 0.
Also, f (x0) = 1 < 2 = f (x∗). Thus problem (31) does not satisfy condition
(ii). We assert that the existence of a saddle point concluded in Theorem 2.2 is not
ensured for this example. Indeed,

Lp(x
∗, µ∗p) = [f (x∗)]p = 2p,

Lp(x0, µ
∗
p) = 1p + 1/2p−2 × (3p − 4p)+ 2× (1p − 2p) < 1.

Hence, for any p > 0, we have Lp(x∗, µ∗p) > Lp(x0, µ
∗
p).

However, if we only take constraints g2 and g3 as the Lagrangian constraints
while combining constraint g1 with X, then a saddle point will exist in a p-th
power formulation of the following problem,

min f (x) = 3− x2
1 − x2

2 (32a)

s. t. g̃1(x) = 3+ x1 + x2 ≤ 4, (32b)

g̃2(x) = 2− x2 ≤ 2, (32c)

x ∈ X̃ = {x ∈ [−1, 1]2 and 3− x1 + x2 ≤ 3} (32d)

Thus, the partitioning of the constraints between the set of Lagrangian constraints
and the set of non-Lagrangian constraints has significant impact on the existence
of a saddle point.

When J−(x∗) �= ∅, the perturbation function w(y) is locally flat at y = b along
the coordinates yi , i ∈ J−(x∗). From Example 4.1, we see that in order to ensure
an existence of a saddle point, condition (ii) in Theorem 2.2 basically requires that
the perturbation function w(y) remain flat over the region: {y ∈ Y | yj ≤ bi, j ∈
J (x∗), yj > bi, j ∈ J−(x∗)}.
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