Existence of a Saddle Point in Nonconvex Constrained Optimization *

D. LI^{1} and X. L. SUN ${ }^{2}$
${ }^{1}$ Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (e-mail: dli@se.cuhk.edu.hk); ${ }^{2}$ Department of Mathematics, Shanghai University, Baoshan, Shanghai 200436, P.R. China

(Received 24 December 1999; accepted in revised form 10 April 2001)

Abstract

The existence of a saddle point in nonconvex constrained optimization problems is considered in this paper. We show that, under some mild conditions, the existence of a saddle point can be ensured in an equivalent p-th power formulation for a general class of nonconvex constrained optimization problems. This result expands considerably the class of optimization problems where a saddle point exists and thus enlarges the family of nonconvex problems that can be solved by dual-search methods.

Key words: Nonconvex constrained optimization, Saddle point, Dual method, p-th power formulation, Global solution

1. Introduction

Let $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ and $g_{j}: \mathbb{R}^{n} \mapsto \mathbb{R}, j=1, \ldots, m$, be twice differentiable functions. Consider the following constrained optimization problem:

$$
\begin{array}{ll}
\min & f(x) \\
\text { s. t. } & g_{j}(x) \leqslant b_{j}, \quad j=1,2, \ldots, m, \\
& x \in X, \tag{1c}
\end{array}
$$

where X is a closed and bounded subset of \mathbb{R}^{n}. Without loss of generality, we assume that f and g_{j} s are strictly positive over X and $b_{j}>0$ for all j. This assumption can be always satisfied via some equivalent transformations (e.g., exponential transformation) on (1).

It is well known that the saddle point condition is a sufficient condition for optimality. A crucial subject in constrained optimization is then the existence of a saddle point of the Lagrangian associated with problem (1). If there exists a saddle point, some efficient dual-search methods (see Luenberger, 1984) can be adopted to solve problem (1). In convex situations, the existence of a saddle point

[^0]is proven in Karlin (1959) using the separation theorem under some constraint qualification conditions. The existence of a saddle point, however, is not guaranteed for nonconvex constrained optimization problems.

The existence of a saddle point is closely related to the convexity of the perturbation function of problem (1) defined by

$$
\begin{equation*}
w(y)=\min \left\{f(x) \mid g_{j}(x) \leqslant y_{j}, \quad j=1,2, \ldots, m, x \in X\right\} \tag{2}
\end{equation*}
$$

The domain of the function w is

$$
\begin{equation*}
Y=\left\{y \in \mathbb{R}^{m} \mid \text { there exists a } x \in X \text { satisfying } g_{j}(x) \leq y_{j}, j=1,2, \ldots, m\right\} \tag{3}
\end{equation*}
$$

It has been shown that problem (1) possesses a saddle point if and only if the graph of w has a supporting hyperplane at $b=\left(b_{1}, \ldots, b_{m}\right)^{T}$ (see Minoux, 1986).

Applying a p-th power, with $p \geq 1$, to both the objective function and the constraints of (1) results in the following p-th power formulation (see Li, 1995 and $\mathrm{Li}, 1997$) which is equivalent to problem (1),

$$
\begin{array}{ll}
\min & {[f(x)]^{p}} \\
\text { s.t. } & {\left[g_{j}(x)\right]^{p} \leq b_{j}^{p}, \quad j=1,2, \ldots, m,} \\
& x \in X . \tag{4c}
\end{array}
$$

Let $w_{p}(z)$ denote the perturbation function of the p-th power formulation in (4),

$$
w_{p}(z)=\min \left\{[f(x)]^{p} \mid\left[g_{j}(x)\right]^{p} \leq z_{j}, j=1,2, \ldots, m, x \in X\right\}
$$

Note that $w_{p}\left(y^{p}\right)=[w(y)]^{p}$. The domain of w_{p} is

$$
Y_{p}=\left\{z=\left(y_{1}^{p}, \ldots, y_{m}^{p}\right)^{T} \mid y \in Y\right\}
$$

It has been proven in Li (1995) that under certain conditions the perturbation function of (4), w_{p}, is a convex function of z in a neighborhood of $b^{p}=\left(b_{1}^{p}, \ldots, b_{m}^{p}\right)^{T}$ when p is chosen sufficiently large. Thus a local saddle point is guaranteed to exist for the p-th power formulation. In many cases, this local saddle point is expected to be a global saddle point of problem (4). It has been shown in Xu (1997) that the same result can be obtained under weaker conditions by applying the p-th power transformation only to the constraints of (1).

The aim of this paper is to show that under some mild conditions, the local saddle point produced by the p-th power method is actually a global saddle point of problem (4) when p is chosen sufficiently large. The result in this paper expands considerably the class of optimization problems where a saddle point exists. Dual-based algorithms can then succeed in solving a general class of nonconvex problems in their p-th power formulations while the classical Lagrangian method fails due to a duality gap.

2. Existence of a Saddle Point

Let x^{*} be a global optimal solution of problem (1). We make the following conventional assumption about x^{*}.

ASSUMPTION 2.1

(a) There is a multiplier vector $\lambda^{*} \in \mathbb{R}_{+}^{m}$ satisfying the following first-order optimality conditions:

$$
\begin{align*}
& {\left[\nabla f\left(x^{*}\right)+\sum_{j=1}^{m} \lambda_{j}^{*} \nabla g_{j}\left(x^{*}\right)\right]^{T} d \geq 0, \quad \forall d \in T\left(x^{*}\right)} \tag{5}\\
& \sum_{j=1}^{m} \lambda_{j}^{*}\left[g_{j}\left(x^{*}\right)-b_{j}\right]=0 \tag{6}
\end{align*}
$$

where $T\left(x^{*}\right)$ denotes the tangent cone of X at x^{*}.
(b) The Hessian of the Lagrangian of problem (1):

$$
H\left(x^{*}\right)=\nabla^{2} f\left(x^{*}\right)+\sum_{j \in J\left(x^{*}\right)} \lambda_{j}^{*} \nabla^{2} g_{j}\left(x^{*}\right)
$$

is positive definite on $M\left(x^{*}\right)$, where

$$
\begin{aligned}
& J\left(x^{*}\right)=\left\{j \in\{1, \ldots, m\} \mid \lambda_{j}^{*}>0\right\} \\
& N\left(x^{*}\right)=\left\{d \in \mathbb{R}^{n} \mid \nabla f\left(x^{*}\right)^{T} d=0 \text { and } \nabla g_{j}\left(x^{*}\right)^{T} d=0, j \in J\left(x^{*}\right)\right\}, \\
& M\left(x^{*}\right)=N\left(x^{*}\right) \cap T\left(x^{*}\right)
\end{aligned}
$$

(c) The set X is locally convex around x^{*}.

The associated Lagrangian function of the p-th power formulation in (4) is defined by

$$
\begin{equation*}
L_{p}(x, \mu)=[f(x)]^{p}+\sum_{j=1}^{m} \mu_{j}\left\{\left[g_{j}(x)\right]^{p}-b_{j}^{p}\right\} \tag{7}
\end{equation*}
$$

Let

$$
\begin{equation*}
\mu_{p}^{*}=\left[f\left(x^{*}\right)\right]^{p-1}\left(\lambda_{1}^{*} /\left[g_{1}\left(x^{*}\right)\right]^{p-1}, \ldots, \lambda_{m}^{*} /\left[g_{m}\left(x^{*}\right)\right]^{p-1}\right)^{T} \tag{8}
\end{equation*}
$$

In the sequel, we always assume $J\left(x^{*}\right) \neq \emptyset$. Otherwise, (1) can be reduced to an unconstrained problem. The following theorem (see Xu, 1997, Theorem 2.3) shows that $\left(x^{*}, \mu_{p}^{*}\right)$ is a local saddle point of the Lagrangian defined by (7) when p is sufficiently large.

THEOREM 2.1 Let x^{*} be a global optimal solution satisfying Assumption 2.1. Then there exists a $q_{0}>0$ and $\delta>0$ such that

$$
\begin{equation*}
L_{p}\left(x^{*}, \mu\right) \leq L_{p}\left(x^{*}, \mu_{p}^{*}\right) \leq L_{p}\left(x, \mu_{p}^{*}\right) \tag{9}
\end{equation*}
$$

holds for all $x \in N\left(x^{*}, \delta\right) \cap X$ and $\mu \geq 0$ when $p \geq q_{0}$, where

$$
N\left(x^{*}, \delta\right)=\left\{x \in \mathbb{R}^{n} \mid\left\|x-x^{*}\right\| \leq \delta\right\}
$$

We now proceed to prove that under certain conditions inequality (9) holds for all $x \in X$ when p is chosen large enough. It is easy to see that the first inequality in (9) always holds by noticing condition (6) and the feasibility of x^{*}. We will prove in the following the second inequality in (9). Let $J^{-}\left(x^{*}\right)=\{1, \ldots, m\} \backslash J\left(x^{*}\right)$. Define

$$
\begin{align*}
& F=\left\{x \in X \mid g_{j}(x) \leq b_{j}, j=1, \ldots, m\right\} \tag{10}\\
& F_{1}(\epsilon)=\left\{x \in X \mid g_{j}(x) \leq b_{j}+\epsilon, j \in J\left(x^{*}\right)\right\} \tag{11}\\
& F_{2}=\left\{x \in X \mid g_{j}(x) \leq b_{j}, j \in J^{-}\left(x^{*}\right)\right\} \tag{12}\\
& U(\epsilon)=\left\{x \in X \mid f(x) \leq f\left(x^{*}\right)+\epsilon\right\} \tag{13}
\end{align*}
$$

THEOREM 2.2 Let x^{*} be a global optimal solution satisfying Assumption 2.1. Suppose that the following conditions hold:
(i) x^{*} is the unique global solution of (1);
(ii) If $J^{-}\left(x^{*}\right) \neq \emptyset$, then there exist positive ϵ_{0} and ϵ_{1} such that

$$
\begin{equation*}
f(x)>f\left(x^{*}\right)+\epsilon_{0}, \quad \forall x \in F_{1}\left(\epsilon_{1}\right) \backslash F_{2} . \tag{14}
\end{equation*}
$$

Then there exists a $q>0$ such that (9) holds for all $x \in X$ and $\mu \geq 0$ when $p \geq q$.
Proof. Denote $N^{0}\left(x^{*}, \delta\right)=\left\{x \in \mathbb{R}^{n} \mid\left\|x-x^{*}\right\|<\delta\right\}$. Let

$$
\begin{aligned}
c & =\operatorname{dist}\left(F, U(0) \backslash N^{0}\left(x^{*}, \delta\right)\right) \\
& =\min \left\{\|x-y\| \mid x \in F, y \in U(0) \backslash N^{0}\left(x^{*}, \delta\right)\right\}
\end{aligned}
$$

We claim that $c>0$. Otherwise, if $c=0$, then there exist two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ satisfying $x_{n} \in F, y_{n} \in U(0) \backslash N^{0}\left(x^{*}, \delta\right)$ such that $x_{n}-y_{n} \rightarrow 0$. Since F is compact, we have $x_{n} \rightarrow \bar{x} \in F$ and $y_{n} \rightarrow \bar{y} \in U(0) \backslash N^{0}\left(x^{*}, \delta\right)$. It follows that $\bar{x}=\bar{y}$. Hence \bar{x} is an optimal solution of problem (1) and $\bar{x} \neq x^{*}$, a contradiction to the uniqueness of the global optimum solution.

Define

$$
\tilde{F}_{2}= \begin{cases}F_{2}, & \text { if } J^{-}\left(x^{*}\right) \neq \emptyset \tag{15}\\ X, & \text { if } J^{-}\left(x^{*}\right)=\emptyset\end{cases}
$$

Note from (10)-(12) that $F=F_{1}(0) \cap \tilde{F}_{2}$. Thus, for any positive ϵ, the set $F_{1}(\epsilon) \cap \tilde{F}_{2}$ is an enlargement of the feasible region F by relaxing the strictly active constraints (with indices $j \in J\left(x^{*}\right)$). Since $c>0$, by the compactness of F and the continuity of f and $g_{j} \mathrm{~s}$, there exists a positive $\epsilon_{2} \leq \epsilon_{1}$ satisfying

$$
\begin{equation*}
\left[F_{1}\left(\epsilon_{2}\right) \cap \tilde{F}_{2}\right] \cap\left[U(0) \backslash N^{0}\left(x^{*}, \delta\right)\right]=\emptyset \tag{16}
\end{equation*}
$$

Let

$$
\begin{align*}
Q & =\left[F_{1}\left(\epsilon_{2}\right) \cap \tilde{F}_{2}\right] \backslash N^{0}\left(x^{*}, \delta\right) \tag{17}\\
\epsilon_{3} & =\min \left\{f(x)-f\left(x^{*}\right) \mid x \in Q\right\} \tag{18}
\end{align*}
$$

Equation (16) implies $\epsilon_{3}>0$.
Now we prove the second inequality in (9) by contradiction. Suppose that there exists a sequence $\left\{x_{p}\right\} \subset X$ with $p \rightarrow+\infty$ such that

$$
\begin{equation*}
L_{p}\left(x_{p}, \mu_{p}^{*}\right)<L_{p}\left(x^{*}, \mu_{p}^{*}\right) \tag{19}
\end{equation*}
$$

Note that $g_{j}\left(x^{*}\right)=b_{j}$ for $j \in J\left(x^{*}\right)$. Thus, from (7) and (8), we can rewrite (19) as

$$
\begin{equation*}
\sum_{j \in J\left(x^{*}\right)} \lambda_{j}^{*}\left\{\left[g_{j}\left(x_{p}\right) / b_{j}\right]^{p-1} g_{j}\left(x_{p}\right)-b_{j}\right\}<f\left(x^{*}\right)-\left[f\left(x_{p}\right) / f\left(x^{*}\right)\right]^{p-1} f\left(x_{p}\right) \tag{20}
\end{equation*}
$$

For convenience, we denote

$$
\begin{aligned}
K_{1} & =\sum_{j \in J\left(x^{*}\right)} \lambda_{j}^{*}\left\{\left[g_{j}\left(x_{p}\right) / b_{j}\right]^{p-1} g_{j}\left(x_{p}\right)-b_{j}\right\} \\
K_{2} & =f\left(x^{*}\right)-\left[f\left(x_{p}\right) / f\left(x^{*}\right)\right]^{p-1} f\left(x_{p}\right)
\end{aligned}
$$

The following can be verified using (11), (12) and (17),

$$
X=Q \cup\left[X \backslash\left(F_{1}\left(\epsilon_{2}\right) \cup N^{0}\left(x^{*}, \delta\right)\right)\right] \cup\left[F_{1}\left(\epsilon_{2}\right) \backslash\left(\tilde{F}_{2} \cup N^{0}\left(x^{*}, \delta\right)\right)\right] \cup\left[N\left(x^{*}, \delta\right) \cap X\right]
$$

Notice from (15) that the set $F_{1}\left(\epsilon_{2}\right) \backslash\left(\tilde{F}_{2} \cup N^{0}\left(x^{*}, \delta\right)\right)=\emptyset$ if $J^{-}\left(x^{*}\right)=\emptyset$. Since, based on Theorem 2.1, (20) does not hold for $x_{p} \in N\left(x^{*}, \delta\right) \cap X$ when p is sufficiently large, we only need to consider the following three cases.

Case (a): $x_{p} \in Q$. From (18), we have $f\left(x_{p}\right) \geq f\left(x^{*}\right)+\epsilon_{3}$. Thus

$$
\begin{align*}
& K_{1} \geq-\sum_{j \in J\left(x^{*}\right)} \lambda_{j}^{*} b_{j} \tag{21}\\
& K_{2} \leq f\left(x^{*}\right)-\left[1+\epsilon_{3} / f\left(x^{*}\right)\right]^{p-1} \underline{f} \tag{22}
\end{align*}
$$

where $\underline{f}=\min _{x \in X} f(x)>0$. Since $\epsilon_{3}>0$, letting $p \rightarrow+\infty$, (22) implies $K_{2} \rightarrow=\infty$, which contradicts (20), when combined with (21).

Case (b): $x_{p} \in X \backslash\left(F_{1}\left(\epsilon_{2}\right) \cup N^{0}\left(x^{*}, \delta\right)\right)$. By (11), there exists a $j_{0} \in J\left(x^{*}\right)$ such that $g_{j_{0}}\left(x_{p}\right)>b_{j_{0}}+\epsilon_{2}$. Thus

$$
\begin{align*}
& K_{1}>\lambda_{j_{0}}^{*}\left(1+\epsilon_{2} / b_{j_{0}}\right)^{p-1}\left(b_{j_{0}}+\epsilon_{2}\right)-\sum_{j \in J\left(x^{*}\right)} \lambda_{j}^{*} b_{j} \tag{23}\\
& K_{2} \leq f\left(x^{*}\right) \tag{24}
\end{align*}
$$

Equation (23) implies that $K_{1} \rightarrow+\infty$ as $p \rightarrow+\infty$, which contradicts (20), when combined with (24).

Case (c): $J^{-}\left(x^{*}\right) \neq \emptyset$ and $x_{p} \in F_{1}\left(\epsilon_{2}\right) \backslash\left(\tilde{F}_{2} \cup N^{0}\left(x^{*}, \delta\right)\right)$. Since $\epsilon_{2} \leq \epsilon_{1}$, by (11) and (15), we have

$$
x_{p} \in F_{1}\left(\epsilon_{2}\right) \backslash\left(F_{2} \cup N^{0}\left(x^{*}, \delta\right)\right) \subset F_{1}\left(\epsilon_{1}\right) \backslash\left(F_{2} \cup N^{0}\left(x^{*}, \delta\right)\right)
$$

Thus, we have $f\left(x_{p}\right)>f\left(x^{*}\right)+\epsilon_{0}$ from (14). Using similar arguments as in case (a), we can derive a contradiction to (20).

PROPOSITION 2.1 If the following holds:

$$
\begin{equation*}
F_{1}(0) \cap U(0)=\left\{x^{*}\right\} \tag{25}
\end{equation*}
$$

then conditions (i) and (ii) in Theorem 2.2 are satisfied.
Proof. Since $F \subseteq F_{1}(0)$, condition (i) can be deduced from (25) directly. Now suppose that $J^{-}\left(x^{*}\right) \neq \emptyset$. By the assumption, we have

$$
\operatorname{dist}\left(F_{1}(0) \backslash F_{2}, U(0)\right)=\inf \left\{\|x-y\| \mid x \in F_{1}(0) \backslash F_{2}, \quad y \in U(0)\right\}>0
$$

Hence, there must exist ϵ_{0} and ϵ_{1} such that

$$
\left[F_{1}\left(\epsilon_{1}\right) \backslash F_{2}\right] \cap U\left(\epsilon_{0}\right)=\emptyset
$$

which implies

$$
f(x)>f\left(x^{*}\right)+\epsilon_{0}, \quad \forall x \in F_{1}\left(\epsilon_{1}\right) \backslash F_{2} .
$$

Therefore, (14) is satisfied.
REMARK 2.1 Geometrically, condition (ii) in Theorem 2.2 requires that the contour $f(x)=f\left(x^{*}\right)$ does not extend to the area near the boundary of F_{2}. Thus, if there exists a supporting hyperplane separating $F_{1}(0)$ from $U(0)$ at x^{*}, then (14) will be satisfied. In the following, we verify (25) for convex programming under assumptions that x^{*} is a unique global solution of (1) and that there is no degenerate active constraints at x^{*}. Note that $F \cap U(0)=\left\{x^{*}\right\}$. Thus, by the convexity of f and $g_{j} \mathrm{~s}$, there is a hyperplane separating F from U_{0} at x^{*}, i.e., $\exists \lambda \neq 0$ such that

$$
\begin{align*}
& \lambda^{T}\left(x-x^{*}\right)<0, \quad \forall x \in F, x \neq x^{*} \tag{26}\\
& \lambda^{T}\left(x-x^{*}\right)>0, \quad \forall x \in U(0), x \neq x^{*} \tag{27}
\end{align*}
$$

Since no active constraint is degenerate, $J\left(x^{*}\right)$ includes all the active indices of the active constraints, and hence there is a positive ϵ such that

$$
\begin{equation*}
F \cap N\left(x^{*}, \epsilon\right)=F_{1}(0) \cap N\left(x^{*}, \epsilon\right) \tag{28}
\end{equation*}
$$

For any $x \in F_{1}(0), x \neq x^{*}$, by the convexity of $F_{1}(0)$, we have $x^{*}+\alpha\left(x-x^{*}\right) \in$ $F_{1}(0)$ for all $\alpha \in[0,1]$. There must exist an $\alpha_{0} \in(0,1)$ such that $x^{*}+\alpha_{0}\left(x-x^{*}\right) \in$ $F_{1}(0) \cap N\left(x^{*}, \epsilon\right)$. Hence $x^{*}+\alpha_{0}\left(x-x^{*}\right) \in F$ by (28). It follows from (26) that

$$
\alpha_{0} \lambda^{T}\left(x-x^{*}\right)=\lambda^{T}\left[x^{*}+\alpha_{0}\left(x-x^{*}\right)-x^{*}\right]<0
$$

which implies $x \notin U(0)$ by (27). Therefore $F_{1}(0) \cap U(0)=\left\{x^{*}\right\}$.
From the equivalence between the existence of a saddle point and the existence of a supporting hyperplane of the perturbation function, we have the following corollary.

COROLLARY 2.1 Under the conditions of Theorem 2.2, there exist $q>0$ and for each $p>q$ a multiplier $\mu_{p}^{*} \in R_{+}^{m}$ satisfying

$$
w_{p}(z) \geq w_{p}\left(b^{p}\right)-\left(\mu_{p}^{*}\right)^{T}\left(z-b^{p}\right)
$$

for all $z \in Y_{p}$ when $p \geq q$.

3. Illustrative Example

EXAMPLE 3.1 Consider the following constrained optimization problem:

$$
\begin{array}{ll}
\min & f(x)=1+\left(2 x_{1}-3\right)\left(2 x_{2}-3\right) \\
\text { s.t. } & g_{1}(x)=2 x_{1}-x_{2}+2 \leq 3 \\
& g_{2}(x)=x_{2}+1 \leq 2 \\
& x \in X=[0,1.5]^{2} \tag{29d}
\end{array}
$$

This example is an indefinite quadratic problem and has a unique global optimal solution $x^{*}=(1,1)^{T}$ with $\lambda^{*}=(1,3)^{T}$, see Figure 1 . The perturbation function defined in (2) is given as follows for this example problem:

$$
w(y)= \begin{cases}1+\left(y_{1}+y_{2}-6\right)\left(2 y_{2}-5\right), & 3 \leq y_{1}+y_{2} \leq 6 \text { and } 1 \leq y_{2} \leq 2.5 \\ 1, & \text { otherwise }\end{cases}
$$

In the neighborhood of $y=(3,2)^{T}, w(y)$ is an indefinite quadratic function with eigenvalues: $2+2 \sqrt{2}$ and $2-2 \sqrt{2}$. There is no supporting hyperplane at $y=$ $(3,2)^{T}$ and hence no saddle point for problem (29), see Figure 2.

Figure 1. Geometrical illustration of Example 3.1.

Now consider the equivalent p-th power formulation of (29):

$$
\begin{array}{cl}
\min & {[f(x)]^{p}=\left[1+\left(2 x_{1}-3\right)\left(2 x_{2}-3\right)\right]^{p}} \\
\text { s. t. } & {\left[g_{1}(x)\right]^{p}=\left(2 x_{1}-x_{2}+\right)^{p} \leq 3^{p},} \\
& {\left[g_{2}(x)\right]^{p}=\left(x_{2}+1\right)^{p} \leq 2^{p},} \\
& x \in X=[0,1.5]^{2} . \tag{30d}
\end{array}
$$

It can be verified that Assumption 2.1 and conditions in Theorem 2.2 are satisfied at x^{*}. Hence there must exist a $p>1$ and a multiplier $\mu_{p}^{*} \geq 0$ such that $\left(x^{*}, \mu_{p}^{*}\right)$ is a saddle point of (30). In fact, when $p=3$, it can be verified that $\mu^{*}=\mu_{3}^{*}=$ $(4 / 9,3)^{T}$ is a saddle point multiplier for problem (30): $x^{*}=(1,1)^{T}$ solves the following Lagrangian problem:

$$
\min _{x \in X} L_{3}\left(x, \mu^{*}\right)=\min _{x \in[0,1.5]^{2}}[f(x)]^{3}+4 / 9\left\{\left[g_{1}(x)\right]^{3}-3^{3}\right\}+3\left\{\left[g_{2}(x)\right]^{3}-2^{3}\right\} .
$$

Combined with (6) and (8), this implies that (x^{*}, μ^{*}) is a saddle point of problem (30). Figure 3 illustrates the perturbation function $w_{3}(z)$ near $z=(27,8)^{T}$.

Figure 2. Perturbation function $w(y)$ of Example 3.1.

Figure 3. 3-rd power perturbation function $w_{3}(z)$ of Example 3.1.

Figure 4. Illustration of condition (ii) in Theorem 2.2 for Example 4.1.

4. Final Remarks

The result in this paper extends the existence results of a saddle point from convex constrained optimization to a general class of nonconvex constrained optimization problems. The result on the existence of a saddle point in Theorem 2.2 can be further extended to certain extent.

Suppose there are finitely many global solutions of (1), $x_{[1]}^{*}, x_{[2]}^{*}, \ldots, x_{[K]}^{*}$. Let $g_{j}^{[k]}=g_{j}\left(x_{[k]}^{*}\right), k=1,2, \ldots, K, j=1,2, \ldots, m$. Suppose there exist no distinct \hat{k} and \tilde{k} such that $g_{j}^{[\hat{k}]}=g_{j}^{[\tilde{k}]}, \forall j=1,, 2, \ldots, m$. Let $x_{[\hat{k}]}^{*}$ be a global solution of (1) such that there exists no other global solution $x_{[\hat{k}]}^{*}, \tilde{k} \in\{1,2, \ldots, K\}, \tilde{k} \neq \hat{k}$ with $g_{j}^{[\tilde{k}]} \leq g_{j}^{[\hat{k}]}, j=1,2, \ldots, m$, and at least one strict inequality holds. Then it can be concluded from Theorem 2.2 that a saddle point will exist for a p-th power formulation of the following modified version of (1), with $x_{[\hat{k}]}^{*}$ being the unique global optimal solution,

$$
\min \quad f(x)
$$

s. t. $g_{j}(x) \leq g_{j}^{[\hat{k}]}, j=1,2, \ldots, m$, $x \in X$,
where the assumptions in Theorem 2.2 are assumed to be satisfied at $x_{[\hat{k}]}^{*}$.
The following example shows that condition (ii) in Theorem 2.2 is indispensable to ensure a saddle point to be produced by the p-th power Lagrangian formulation.

EXAMPLE 4.1 Consider a concave instance of problem (1):

$$
\begin{array}{cl}
\min & f(x)=3-x_{1}^{2}-x_{2}^{2} \\
\text { s. t. } & g_{1}(x)=3-x_{1}+x_{2} \leq 3, \\
& g_{2}(x)=3+x_{1}+x_{2} \leq 4, \\
& g_{3}(x)=2-x_{2} \leq 2, \\
& x \in X=[-1,1]^{2} . \tag{31e}
\end{array}
$$

A graphical illustration of this example is given in Figure 4. We see that the unique global optimal solution of (31) is $x^{*}=(1,0)^{T}$. It can be verified that $\lambda^{*}=$ $(0,2,2)^{T}, \mu_{p}^{*}=\left(0,1 / 2^{p-2}, 2\right)^{T}, J\left(x^{*}\right)=\{2,3\}, M\left(x^{*}\right)=\{0\}$. Consider point $x_{0}=(-1,1)^{T} \in X$. From Figure 4 , we can see that $x_{0} \in F_{1}(\epsilon) \backslash F_{2}$ for any $\epsilon>0$. Also, $f\left(x_{0}\right)=1<2=f\left(x^{*}\right)$. Thus problem (31) does not satisfy condition (ii). We assert that the existence of a saddle point concluded in Theorem 2.2 is not ensured for this example. Indeed,

$$
\begin{aligned}
L_{p}\left(x^{*}, \mu_{p}^{*}\right) & =\left[f\left(x^{*}\right)\right]^{p}=2^{p} \\
L_{p}\left(x_{0}, \mu_{p}^{*}\right) & =1^{p}+1 / 2^{p-2} \times\left(3^{p}-4^{p}\right)+2 \times\left(1^{p}-2^{p}\right)<1
\end{aligned}
$$

Hence, for any $p>0$, we have $L_{p}\left(x^{*}, \mu_{p}^{*}\right)>L_{p}\left(x_{0}, \mu_{p}^{*}\right)$.
However, if we only take constraints g_{2} and g_{3} as the Lagrangian constraints while combining constraint g_{1} with X, then a saddle point will exist in a p-th power formulation of the following problem,

$$
\begin{array}{cl}
\min & f(x)=3-x_{1}^{2}-x_{2}^{2} \\
\text { s. t. } & \tilde{g}_{1}(x)=3+x_{1}+x_{2} \leq 4, \\
& \tilde{g}_{2}(x)=2-x_{2} \leq 2, \\
& x \in \tilde{X}=\left\{x \in[-1,1]^{2} \text { and } 3-x_{1}+x_{2} \leq 3\right\} \tag{32d}
\end{array}
$$

Thus, the partitioning of the constraints between the set of Lagrangian constraints and the set of non-Lagrangian constraints has significant impact on the existence of a saddle point.

When $J^{-}\left(x^{*}\right) \neq \emptyset$, the perturbation function $w(y)$ is locally flat at $y=b$ along the coordinates $y_{i}, i \in J^{-}\left(x^{*}\right)$. From Example 4.1, we see that in order to ensure an existence of a saddle point, condition (ii) in Theorem 2.2 basically requires that the perturbation function $w(y)$ remain flat over the region: $\left\{y \in Y \mid y_{j} \leq b_{i}, j \in\right.$ $\left.J\left(x^{*}\right), y_{j}>b_{i}, j \in J^{-}\left(x^{*}\right)\right\}$.

5. Acknowledgements

The authors appreciate the comments from Dr. Yunbin Zhao and from the anonymous referees.

References

Karlin, S. (1959), Mathematical Methods and Theory in Games, Programming and Economics, Vol. 1, Addison-Wesley, Reading, Massachusetts.
Minoux, M. (1986), Mathematical Programming: Theory and Algorithm, John Wiley and Sons, New York.
Li, D. (1995), Zero duality gap for a class of nonconvex optimization problems, Journal of Optimization Theory and Applications 85: 309-324.
Li, D. (1997), Saddle-point generation in nonlinear nonconvex optimization, Nonlinear Analysis 30: 4339-4344.
Luenberger, D.G. (1984), Linear and Nonlinear Programming, Second Edition, Addison-Wesley, Reading, Massachusetts.
Xu, Z.K. (1997), Local saddle points and convexification for nonconvex optimization problems, Journal of Optimization Theory and Applications 94: 739-746.

[^0]: * This research was partially supported by Research Grants Council, grant CUHK358/96P and CUHK 4056/98E, Hong Kong, China, and the National Science Foundation of China under Grant 79970107.

